Дерек Хауз
Гринвичское время и открытие долготы
 

Хауз Д. 'Гринвичское время и открытие долготы' - Москва: 'Мир', 1983
Отрывки из книги

 

7. Часы, более точные, чем Земля

До сих пор мы подробно говорили о распространении и использовании времени - основного предмета нашего повествования, теперь же перейдем непосредственно к астрономическим часам. Еще совсем недавно основным хранителем времени была сама вращающаяся Земля, и время определялось из астрономических наблюдений; часы же использовались только для того, чтобы «хранить» время в относительно короткие промежутки между наблюдениями. В данной главе основной акцент сделан на усовершенствованиях самих часов и последствиях этих усовершенствований, так как именно за последние сорок лет часы, изготовленные руками человека, превзошли по своей точности такой хранитель времени, каким является Земля.

 

67. Шпиндельный спуск, регулируемый при помощи маятника

67. Шпиндельный спуск, регулируемый при помощи маятника

 

За первые два века существования Королевской обсерватории - благодаря изобретению Грэхемом и другими мастерами начала XVIII в. нового спускового регулятора хода и температурно-компенсированного маятника - точность маятниковых часов несколько увеличилась, но эти изобретения нельзя было назвать фундаментальными. В 1676 г. часы с годовым заводом Флемстида работали с точностью в пределах 7 с в сутки; в 1870 г. часы Эри с барометрически-компенсированным регулятором хода (Дент № 1906) имели точность около 0,1 с в сутки (довольно высокую для того времени). Более подробно эти и другие усовершенствования в устройствах хранения времени рассматриваются в приложении III.

В последнем десятилетии XIX в. некоторые ведущие астрономические обсерватории мира (Гринвичская обсерватория не относилась к их числу) начали применять часы, изготовленные конструктором Зигмундом Рифлером (1847-1912) из Мюнхена, которые превышали по точности все прежние образцы часов. Но действительно коренной перелом произошел в 20-х годах нашего столетия, когда появились часы Шорта со свободным маятником - одно из самых важных усовершенствований в деле хранения времени с момента изобретения маятниковых часов два столетия назад. Идея свободного маятника была предложена Раддом еще в 1899 г., но на практике была осуществлена в 1921-1924 гг. Уильямом Гамильтоном Шортом, железнодорожным инженером, работавшим совместно с Ф. Хоуп-Джонсом и компанией «Синхроном». В обычных маятниковых часах необходимо поддерживать равномерность колебаний качающегося маятника, от которого зависит точность хранения времени, и одновременно отсчитывать эти колебания. В часах со свободным маятником эти две задачи решаются с помощью вторичного маятника, что позволяет основному маятнику все время качаться совершенно свободно, кроме тех долей секунды, когда он через каждые полминуты получает импульс от вторичных часов. Часы Шорта показали точность хода 10 с в год, тогда как лучшие образцы их предшественников имели точность хода около 1 с за 10 дней. Гринвичская обсерватория приобрела первые экземпляры часов Шорта в 1924 г. и использовала часы «Шорт № 3» в качестве стандарта звездного времени. Затем были приобретены и другие часы Шорта. За несколько лет часы со свободным маятником вытеснили в обсерватории все другие более старые часы, некоторые из которых, например часы Грэхема, применялись астрономами в течение почти двух столетий, и все используемые образцы (кроме недавно приобретенной копии часов Рифлера) служили уже не менее 55 лет.

 

68. Возвратный спуск

68. Возвратный спуск

 

Одно из последствий увеличения точности первичных хранителей времени выразилось в изменении самого предназначения Гринвичской службы времени. С момента основания Эри (в 1852 г.) службы хранения времени ее работа опиралась на двое эталонных часов: звезд^юго эталона и среднего солнечного эталона. Передача сигналов точного времени по радио дала возможность с очень высокой точностью сравнивать между собой часы различных обсерваторий мира по нескольку раз в день. Более того, Гринвичская обсерватория сама имела большое количество высокоточных часов. Поэтому в 1938 г. был отменен принятый Эри стандарт - одни часы и появилась возможность использовать среднее значение времени, вычисленное по показаниям нескольких часов, причем одни из этих часов хранили звездное время, другие - солнечное. Поначалу таких хранителей в Англии было шесть: пять в Гринвиче и один в Национальной физической лаборатории в Теддингтоне; год спустя к ним добавился еще один-в Эдинбурге; все это были часы Шорта со свободными маятниками.

Кварцевые часы

Теперь остановимся на современной концепции времени, в частности рассмотрим различие между понятиями: момент времени («дата» или «эпоха») и интервал времени. Любой человек, спешащий на поезд или самолет, прежде всего интересуется моментом, а, скажем, судья матча по боксу - интервалом времени. Существует еще и третье понятие: частота периодически повторяющегося явления, или число циклов этого явления в единицу времени; современное название единицы частоты - герц (Гц) идентично названию старой единицы - цикл в секунду.

Созданию кварцевых часов - которые позволили еще более повысить качество хранения времени, чем это обеспечивали часы со свободным маятником, появившиеся за несколько десятилетий до кварцевых, -способствовала заинтересованность инженеров телевидения в разработке надежного стандарта частоты электромагнитных волн. Кварцевый кристалл впервые стал применяться с возникновением радиовещания в начале 1920-х гг. и служил источником радиочастотных колебаний высокой стабильности. Впервые на возможность использования кварца в часах было указано в 1928 г. Хортоном и Маррисоном (США). В 1939 г. были установлены первые кварцевые часы в Гринвиче; точность этих часов, разработанных Дайем и Эссеном, составляла около 2 мс (1 миллисекунда=10" 3 с) в сутки. Война помешала осуществлению замысла - установить в обсерватории еще несколько кварцевых часов; служба времени была перенесена в более безопасное место - в Гравиметрическую обсерваторию в Абинжере. Резервная станция службы времени начала работать в 1941 г. в Королевской обсерватории в Эдинбурге. Сначала в Абинжере не было действующих кварцевых часов, и поэтому там ежедневно принимали сигналы времени из Национальной физической лаборатории, которая располагала парой таких часов. Эти часы вместе с часами со свободными маятниками образовывали «средние часы».

 

69. Механизм маятниковых часов 1768 г., сделанный Джоном Шелтоном, мастером Джорджа Грэхема и изготовителем регуляторов, используемых в Гринвиче для астрономических целей в период 1725-1925 гг. (Национальный морской музей.)

69. Механизм маятниковых часов 1768 г., сделанный Джоном Шелтоном, мастером Джорджа Грэхема и изготовителем регуляторов, используемых в Гринвиче для астрономических целей в период 1725-1925 гг. (Национальный морской музей.)

 

Нужды военного времени, прежде всего развитие радиолокационной техники и точных систем воздушной навигации, требовали от английской службы времени десятикратного увеличения точности радиосигналов времени. Поэтому в 1942 г. было достигнуто соглашение с отделом радио почтового управления о ежедневных передачах в Абинжер сигналов времени, показываемого кварцевыми часами, принадлежащими управлению. Это нововведение оказалось настолько успешным, что позволило в 1943 г. изъять часы Шорта из группы, образующей «средние часы». Кварцевые часы, ошибки которых определялись из астрономических наблюдений, проводившихся в Абинжере и Эдинбурге, стали первичным эталоном, на котором базировалась служба времени, тогда как часы обсерватории использовались в качестве вторичного стандарта для контроля сигналов времени. В 1944 г. контроль международных сигналов времени, передававшихся из Регби, как и позднее, в 1949 г., шеститочечных сигналов Би-би-си, осуществлялся с помощью новых кварцевых часов в Абинжере. Служба времени в Эдинбурге прекратила свое существование в январе 1946 г. и вскоре шесть принадлежащих ей кварцевых часов были переданы Гринвичской обсерватории; однако штаб-квартира службы времени по-прежнему оставалась в Абинжере, имевшем двенадцать кварцевых часов. К этому времени точность таких часов возросла до 0,1 мс в сутки. Между тем астрономы устремились прочь от смога и уличных огней Гринвича, мешавших наблюдениям, к прозрачному воздуху Хёрстмонсо, расположенному в графстве Сассекс, куда в 1957 г. переместилась из Абинжера и служба времени [1].

Неравномерность вращения земли

Увеличение точности хранения времени позволило заострить внимание на другой проблеме, которую десятый королевский астроном Харольд Спенсер Джонс резюмировал в 1950 г. следующим образом:

«Вращающаяся Земля обеспечивает нас фундаментальной единицей времени - сутками. Первое требование к любой фундаментальной единице - ее постоянство и воспроизводимость; единица должна означать одно и то же для всех людей и во все времена. При принятии суток, или, более точно, средних солнечных суток за фундаментальную единицу, из которой в качестве производных мы получаем час, минуту и секунду, следует безоговорочно предположить, что ее длина неизменна, другими словами, что Земля является совершенным хранителем времени» [2].

То, что Земля не является совершенным хранителем времени, отметил еще Иммануил Кант в 1754 г., но, чтобы представить полную историю этого вопроса, мы должны перенестись еще на шестьдесят лет назад. В 1695 г. Эдмунд Галлей, анализируя затмения, происходившие в древние времена, пришел к выводу, что движение Луны вокруг Земли ускоряется; позже это было подтверждено непосредственными измерениями. В 1787 г. Лаплас показал, что это явление можно объяснить медленными изменениями формы орбиты Земли, но в 1853 г. Адаме отметил, что изменения орбиты позволяют только наполовину объяснить видимую величину лунного ускорения. После долгих научных споров было окончательно доказано, что на основе теории тяготения Лапласа нельзя полностью объяснить ускорение движения Луны - это можно сделать, лишь допустив, что Земля в своем вращении постепенно замедляется в значительной степени из-за трения, обусловленного приливными эффектами.

 

70. Часы Шорта со свободным маятником 16 (главные и вторичные часы) в Гринвиче (около 1930 г.), контролировавшие сигналы времени в период 1927-1940 гг. (Национальный морской музей.)

70. Часы Шорта со свободным маятником 16 (главные и вторичные часы) в Гринвиче (около 1930 г.), контролировавшие сигналы времени в период 1927-1940 гг. (Национальный морской музей.)

 

Сегодня мы знаем, что существует три вида изменений в скорости вращения Земли, первые два из которых известны благодаря изучению движений Луны и планет, а последний был качественно обнаружен при помощи часов со свободным маятником и определен количественно с появлением кварцевых часов:

1) вековые изменения - постепенное замедление, обусловленное действием лунных и солнечных приливов, вследствие которого продолжительность земных суток увеличивается на 1,5 мс за столетие;

2) нерегулярные (или непредсказуемые) изменения, по всей видимости, вызываемые различием в скоростях вращения жидкого ядра и твердой мантии Земли, которые могут приводить к увеличению или уменьшению продолжительности суток на 4 мс за десятилетие;

3) сезонные вариации, отражающие сезонные изменения в мировом океане и воздушных массах Земли. Примером этого может служить таяние и замерзание полярных ледяных шапок и движение воздушных масс из обширных областей высокого атмосферного давления, существующих зимой в Сибири, на территории с высоким давлением летом. Земля вращается медленнее весной и в начале лета и быстрее - осенью. В результате колебания в продолжительности дня могут достигать 1,2 мс.

Существует еще одно явление, которое, хотя оно и не воздействует на скорость вращения Земли, необходимо учитывать при точном хранении времени. Это колебания полюса, или перемещение тела Земли относительно оси вращения (подобно качающемуся в механизме подшипнику), заставляющие блуждать полюса Земли приблизительно с 14-месячным периодом в пределах окружности радиусом около 8 м. Эффект колебаний полюса изменяет географические широту и долготу любого места на Земле (в чем удалось убедиться с помощью астрономических наблюдений), а это из-за изменения долготы приводит к соответствующим изменениям шкалы времени в каждом пункте на земной поверхности.

 

71. Покоящийся спуск

71. Покоящийся спуск

 

Как указал Спенсер Джонс, первое требование к фундаментальной единице - ее постоянство и воспроизводимость. Поэтому к 1950-м гг. секунда, основанная на вращении Земли, изменяющая, хотя и незначительно, свою продолжительность, перестала удовлетворять предъявляемым к ней требованиям. Возник вопрос: что же делать дальше?

Эфемеридное время

Первоначально было решено отказаться от солнечных суток как фундаментальной единицы времени и вместо них пользоваться годом, продолжительность которого, хотя и не постоянна, но может быть заранее вычислена с учетом ее уменьшения приблизительно на полсекунды в столетие. Это привело к введению в международной практике в 1952 г. для некоторых целей новой шкалы времени - эфемеридного времени (ЕТ), которое стали использовать - о чем говорит уже само его название - для составления различных национальных эфемерид и ежегодников. Как мы уже говорили в предыдущей главе, в результате решения Вашингтонской конференции 1884 г. и специальных рекомендаций Международного астрономического союза, принятых в 1928 г., гринвичское время стало называться всемирным временем (UT). Поэтому далее в этой главе, когда речь пойдет о среднем солнечном времени гринвичского меридиана, мы будем оказывать предпочтение названию UT, а не GMT. Сейчас UT, основанное на вращении Земли вокруг своей оси, задает шкалу времени, необходимую для астронавигации. Но, как мы уже отмечали, скорость вращения Земли меняется, поэтому в 1956 г. для специальных потребностей служб времени возникла необходимость в более точном определении UT:

UT0-среди ее солнечное время нулевого меридиана, полученное непосредственно из астрономических наблюдений;

UT1 - это UT0 с поправками на движение полюса (не более чем на 0,035 с). Шкала UT1 используется для астронавигации;

UT2 - это UT0 с поправками на движение полюса и на экстраполированные изменения в скорости вращения Земли (также не более чем на 0,035 с). UT2 - «сглаженная» шкала времени, задающая по возможности равномерное время. До 1972 г. эта шкала была основой сигналов времени [3].

Вопрос о шкале ЕТ и ее связи с UT слишком сложен, чтобы его рассматривать здесь. Достаточно сказать, что ЕТ довольно близко соответствует UT, поскольку продолжительность эфемеридных суток задается продолжительностью средних солнечных суток в XIX в. В 1956 г. специалисты отказались от использования средних солнечных суток в качестве международной фундаментальной единицы времени в пользу эфемеридной секунды, определенной как «1/31556925,9747 доля тропического года 0 января 1900 г. в 12 ч эфемеридного времени» [4].

 

72. Решетчатый маятник

72. Решетчатый маятник

 

Однако переход на новую систему не решил всех проблем. Благодаря своей неизменности эфемеридная секунда очень удобна для теоретических расчетов и применяется в различных эфемеридах. Но эфемеридная секунда не годится для повседневного использования по двум причинам. Во-первых, она не всегда имеется в распоряжении, так как определить ее с требуемой точностью можно только с большой задержкой после обработки многочисленных результатов наблюдений. Во-вторых, для тех, кто интересуется именно точным моментом времени, а не временным интервалом-в том числе и для широкой публики, - необходимо, чтобы сигналы времени как можно точнее соответствовали вращению Земли, смене дня и ночи. Кроме того, хотя разница между ЕТ и UT на протяжении года была очень мала, с годами она накапливается вследствие систематического замедления вращения Земли и может достигать весьма значительной величины. В 1952 г., когда ЕТ впервые было использовано, накопленная разность между этой шкалой, основанной на скорости вращения Земли в XIX в., и UT, основанной на данных 1952 г., составляла около 30 с.

Применение ЕТ в сигналах времени явилось в какой-то степени компромиссным решением, поскольку физикам и инженерам телевидения требовалось, чтобы продолжительность секунды сигнала времени была бы постоянной, т.е. «означала бы одно и то же для всех народов и во все времена», тогда как для обычных потребителей времени, а также навигаторов и геодезистов было необходимо, чтобы сигнал времени, скажем, отмечающий полдень, совпадал с полуденным расположением небесных тел. До 1944 г. сигналы времени, контролируемые Гринвичем, задавались, насколько это было возможно, вращением Земли, в результате чего секунда (получаемая из сигналов времени) ото дня ко дню могла менять свою продолжительность, хотя и очень незначительно. В 1944 г. в Великобритании была сделана попытка передавать секундные сигналы по возможности через равные промежутки времени, продолжительность которых определялась средним значением секундного интервала, задаваемого самыми точными кварцевыми часами, а при необходимости (по средам) производить коррекции «скачком» для согласования со шкалой всемирного (астрономического) времени. В то же время в США такое компромиссное решение между передачей частоты и времени не было принято; сигналы времени, передаваемые радиостанцией Аннаполиса и контролируемые обсерваторией ВМС США, поддерживались в точном соответствии с вращением Земли, а эталонная частота, контролируемая Национальным бюро стандартов США и передаваемая его радиостанцией, по возможности сохранялась неизменной.

Атомные часы

Покончить с одним из недостатков эфемеридного времени - его недоступностью - помогли атомные часы. Первый действующий комплект системы атомных часов был разработан в Национальном бюро стандартов США (Вашингтон) Гарольдом Лайонсом и его коллегами в 1948-1949 гг. с использованием для стабилизации кварцевого генератора спектральной линии поглощения аммиака. 12 августа 1948 г. атомные часы начали действовать в качестве эталона частоты. Вскоре после этого внимание привлек другой химический элемент - цезий. Самая первая конструкция цезиевого эталона, связанная с именами Шервуда, Захариаса и особенно Рамзея, была предложена в США. Но регулярное использование цезиевого лучевого эталона, сконструированного Эссеном и Парри, началось в Национальной физической лаборатории в Англии. В июне 1955 г., когда было принято решение использовать эфемеридную секунду в качестве фундаментальной единицы времени, цезиевый эталон применили для калибровки кварцевых часов и в качестве эталона частоты. Затем в течение последующих нескольких лет лабораторные цезиевые стандарты появились в Боулдере (Колорадо), в Оттаве и Нойшателе [5].

 

73. Спусковой механизм Шеперда

73. Спусковой механизм Шеперда

 

Даже самые первые экземпляры атомных часов обладали в сотни раз большей долговременной стабильностью, чем кварцевые эталоны. Кроме того, они не были подвержены плавному изменению хода, который происходит в кварцевых генераторах из-за «старения» кристалла кварца. По этим причинам атомные часы обеспечили высокостабильную шкалу времени очень высокой точности (по крайней мере в десятки раз превышающую точность других хранителей времени), почти мгновенно доступную. Но прошло еще немало лет, прежде чем эти преимущества были реализованы. Только последние экземпляры цезиевых лучевых эталонов имеют такую же кратковременную стабильность, какую показывают кварцевые часы.

Все часы должны быть отрегулированы таким образом, чтобы они имели одинаковый ход, т.е. одинаково «хранили время», а также показывали одинаковое время. Новые атомные часы не были исключением, и первой задачей явилась их калибровка по работающим стандартным образцам, другими словами, шкалу атомного времени нужно было привести в определенное соответствие с астрономической шкалой времени. За период 1955-1958 гг. атомные часы Англии и США были откалиброваны по астрономическим шкалам времени Хёрстмонсо и Вашингтона. Первая атомная шкала времени, известная как GA (Greenwich atomic - гринвичская атомная), основывалась сначала на цезиевом эталоне Национальной физической лаборатории, согласованном с эфемеридным временем.

 

74. Устройство вторичных часов

74. Устройство вторичных часов

 

С 1959 г. всемирное распространение получила шкала времени AJ обсерватории ВМС США. Ее начальная эпоха (дата) была установлена так, чтобы атомное время и UT2 были одинаковыми в полночь на 1 января 1958 г. Атомная секунда была определена на основе резонанса в атоме цезия. В 1964 г. атомная секунда была признана в международном масштабе как средство реализации эфемеридной секунды. В 1967 г. на 13-й Всемирной конференции мер и весов в Париже от астрономического определения секунды отказались и в качестве фундаментальной единицы времени в Международной системе единиц СИ приняли атомную секунду:

Единицей времени в Международной системе единиц должна быть секунда, определяемая следующим образом: секунда есть продолжительность 9192631770 периодов излучения, соответствующего переходу между двумя сверхтонкими подуровнями основного состояния атома цезия - 133 [6].

Благодаря тому что атомные часы стали применяться во многих странах мира, а их шкалы времени с помощью радиосигналов и другими способами могли сравниваться с точностью до 1 мкс (микросекунда=10-6 с) и выше, появилась возможность создания международных «усредненных часов» высокой точности, основанных на большом количестве независимых показаний всех атомных часов, идущих с исключительной равномерностью. Расхождение в ходе этих часов за год не превышало нескольких микросекунд, тогда как шкалы времени, задаваемые ими, уклонялись от шкалы, основанной на вращении Земли, более чем на секунду в год.

 

75. Взаимодействие часов со свободным маятником и вторичных часов

75. Взаимодействие часов со свободным маятником и вторичных часов

 

Международное бюро времени, координирующее с 1919 г. хранение времени в международном масштабе, сформировало вслед за США собственную шкалу атомного времени А3, основанную на трех независимых эталонах Англии, Швейцарии и США с начальной эпохой 1 января 1958 г. Шкала А3 официально была принята в 1971 г. и получила название шкалы Международного атомного времени TAI. Но и 21 год спустя, к 1 января 1979 г., равноправно существовали две шкалы: TAI (основанная на скорости вращения Земли в XIX в.) и итг (основанная на вращении Земли за период 1958-1979 гг.), опережающая TAI приблизительно на 17с.

Координация сигналов времени

А теперь снова вернемся к сигналам времени. В 1958 г. служба времени Англии ввела новую шкалу, позднее названную шкалой координированного всемирного времени (UTC), сигналы времени которой не должны были отличаться более чем на 0,1 с от UT2. Это достигалось путем небольшого скачкообразного изменения («сдвига») частоты атомных часов, генерирующих сигналы времени, которое заставляло атомное время приблизиться к UT2 (в 1960-х гг. его нужно было уменьшить). Величина сдвига принималась на весь календарный год, но благодаря возможности предсказывать изменения в скорости вращения Земли скачкообразная коррекция проводилась каждый месяц, чтобы сохранять уклонение UTC от UT2 в пределах 0,1 с. Полное соответствие между службами времени Англии и США было достигнуто в 1961 г.: были синхронизованы сигналы времени и проведены годовые сдвиги и месячные скачкообразные коррекции. В 1963 г. эта система Англии и США распространилась по всему миру и была взята под контроль МБВ в Париже; тогда-то она и получила наименование UTC [7].

 

76. Кварцевые часы

76. Кварцевые часы

 

Однако расширение и усложнение систем спутниковой и других видов электронной связи, а также навигационных систем породило новые большие практические трудности. Работа этих систем зависит от степени синхронизации как самих радиосигналов, так и частот. Скачкообразная коррекция и подстройка частоты приводили ко многим неудобствам. На фоне этого факт, что секунда радиосигналов времени не соответствовала узаконенной секунде, воспринимался скорее как неэстетическая деталь, нежели как реальное препятствие.

Дополнительная секунда

После всестороннего обсуждения на всех уровнях, государственных и международном, в эталонную систему сигналов времени были внесены существенные изменения. С 1 января 1972 г. сигналы времени стали точно соответствовать атомным секундам, отсчет времени по новой шкале UTC был установлен со сдвигом - 10 мин относительно шкалы TAI. Эта система передач точного времени действует и по сей день.

Было принято соглашение, согласно которому уклонение новой системы не должно превышать 0,7 с (позднее этот допуск увеличили до 0,9 с) от шкалы времени UT1 используемой в навигации и астрономии. Достигается это путем коррекции часов в последний день календарного месяца, предпочтительно 31 декабря или 30 июня, при этом часы переводятся вперед или назад точно на 1 с, называемую «дополнительной секундой». Это аналогично процедуре, производимой раз в четыре года, когда к февралю високосного года добавляется один дополнительный день, поскольку год не содержит целого количества суток; точно так же добавляется или вычитается одна секунда, так как солнечные сутки не содержат целого числа атомных секунд.

 

77. Кварцевые часы. Это единственные кварцевые часы, которые до сих пор работают в Гринвичской обсерватории. Они содержат линзообразный (AT-среза) кристалл и генерируют сигналы с частотой 2,5 МГц. Это один экземпляр из той пары часов, которые были закуплены в США в 1964 г., после того как они прошли испытания в Морской обсерватории США (Гринвичская обсерватория.)

77. Кварцевые часы. Это единственные кварцевые часы, которые до сих пор работают в Гринвичской обсерватории. Они содержат линзообразный (AT-среза) кристалл и генерируют сигналы с частотой 2,5 МГц. Это один экземпляр из той пары часов, которые были закуплены в США в 1964 г., после того как они прошли испытания в Морской обсерватории США (Гринвичская обсерватория.)

 

Таким образом, международные сигналы времени и частоты, передаваемые, например, определенными станциями в Англии и США, точно соответствуют шкале атомного времени без перерывов и каких-либо изменений на протяжении года. В тот же момент, когда добавляется дополнительная секунда (она может быть и положительной, и отрицательной), происходит лишь изменение нумерации секундных отметок. Поэтому, чтобы произвести, например, коррекцию 31 декабря добавлением «положительной» секунды, необходимую вследствие того, что UTC слишком далеко уклонилось от UT1, последнюю «минуту» года увеличивают до 61 с. Для проведения коррекции «отрицательной» секундой последнюю «минуту» уменьшают до 59 с. Для тех, кому необходимо более точное знание UT1 (например, навигаторам и астрономам), на основные временные и частотные сигналы накладывают определенный код, указывающий число десятых долей секунды, на которое в данный день UTC уклонилось от UT1.

Эталонные сигналы времени, координируемые МБВ в Париже, базируются на всемирных «средних часах», расчетные значения которых получаются путем усреднения информации почти восьмидесяти атомных часов, принадлежащих двадцати четырем странам мира. Участвовать в этой операции могут пока лишь те страны, которые находятся в сфере действия радионавигационной системы «Лоран-С», но в будущем системы спутниковой навигации позволят сравнивать между собой показания большего количества часов. Момент, когда должна производиться коррекция UTC, т.е. вводиться дополнительная секунда, устанавливает МБВ. В 1972 г. уклонение UTC от TAI составило точно 10 с. К 1 января 1979 г. было добавлено еще 8 дополнительных секунд, и поэтому уклонение UTC от TAI увеличилось до 18с.

С началом передач сигналов времени в 1972 г. в новой шкале UTC, связанной со шкалой атомного времени TAI, вместо старой UTC, основанной на шкале среднего солнечного времени UT2 (которую многие неспециалисты продолжают называть GMT), возникли новые разногласия, связанные с терминологией шкал времени. Конечно, новая шкала времени по-прежнему основывалась на гринвичском меридиане, но ее уже нельзя было назвать шкалой среднего солнечного времени, основанной на меридиане Гринвича (т. е. GMT), хотя она никогда не уклонялась более чем на 0,9 с от последней. В самом деле, в настоящее время даже гринвичский меридиан уже не точно совпадает с тем, который проходил через «центр пассажного инструмента обсерватории в Гринвиче». И хотя этот инструмент до сих пор существует, наблюдения на нем не проводятся; сегодня начальный меридиан долготы и времени не зафиксирован точно каким-либо вещественным образом, а его положение определяется статистически на основании результатов наблюдений всех определяющих время станций, учитываемых МБВ при координировании эталонных сигналов времени. Но все же старый меридиан, изображенный латунной полоской во дворе старой обсерватории, находится не более чем в нескольких метрах от воображаемой линии, задающей нулевой меридиан земного шара.

 

78. Цезиевый лучевой эталон частоты в Хёрстмонсо, 1974 г. Изготовлен фирмой 'Хьюлетт-Паккард', тип 5060 А. (Гринвичская обсерватория.)

78. Цезиевый лучевой эталон частоты в Хёрстмонсо, 1974 г. Изготовлен фирмой 'Хьюлетт-Паккард', тип 5060 А. (Гринвичская обсерватория.)

 

Хотя термин GMT в астрономии сейчас не применяется, им продолжают пользоваться в навигации, для многих гражданских целей, а также в качестве названия декретного времени во многих странах мира. Но даже эти страны, и особенно Франция, в последнее время стали противиться применению GMT. В 1975 г. 15-я Всемирная конференция мер и весов рекомендовала пользоваться сигналами времени новой шкалы UTC, a в будущем принять эту шкалу как основу декретного времени [8], заменив ею GMT, так как изменения UTC, произведенные в 1972 г., сделали шкалу GMT неопределенной [9]. Франция и Испания уже приняли соответствующие законодательные меры; в период написания настоящей книги к этому готовились Нидерланды, Швейцария и ФРГ. 9 августа 1978 г. во Франции был отменен закон от 1911 г. (который гласил, что декретное время во Франции это парижское среднее время, задержанное на 9 мин 21 с), и на всей территории страны было утверждено время, которое в дальнейшем будет определяться посредством добавления к UTC или вычитания из него определенного количества часов и которое может быть увеличено или уменьшено на некоторых отрезках года путем введения летнего времени; GMT в будущем предлагалось не употреблять [10].

Так как к 1978 г. была добавлена одна дополнительная секунда, казалось бы, можно подумать, что 1978 г. стал длиннее предыдущего года. Это, конечно, не так. Хорошо известно, что продолжительность года уменьшается только на полсекунды за столетие. На самом деле длиннее стали сутки - всемирные сутки (час, минута и секунда). Поэтому сутки 365-дневного 1978 г. стали длиннее на одну секунду суток 365-дневного года XIX в., принятого за основу для сигналов времени. Одна дополнительная секунда была добавлена к 1978 г. для того, чтобы по крайней мере в первом полугодии 1979 г. полуденный сигнал точного времени не расходился более чем на 0,9 с с истинным полуднем, определяемым расположением звезд.

 

79. Схема цезиевой лучевой трубки 'Хронорама' (Эбоше, Швейцария)

79. Схема цезиевой лучевой трубки 'Хронорама' (Эбоше, Швейцария)

 

Невозможно предсказать заранее, как будет меняться скорость вращения Земли в ближайшие десятилетия. Сейчас Земля замедляет свое вращение значительно быстрее, чем в прошедшие три столетия. Но вполне возможно, что эта тенденция изменится и, скажем, в 1990-х гг. придется отменить введение дополнительной (положительной) секунды или даже ввести отрицательную дополнительную секунду. Тем не менее в будущем - возможно, в ближайшие десятки, сотни, или тысячи лет - два или даже три раза в год придется вводить положительную дополнительную секунду, если мы будем продолжать основывать нашу шкалу времени на средней продолжительности суток в XIX в. Что касается более отдаленного будущего, то эффект замедления вращения Земли - через несколько миллионов лет в году останется только 365 суток, а не 365 1/4., как сейчас, - приведет к ликвидации дополнительных високосных суток (но не дополнительных секунд).

Источник